

Eco - Steamer

일본 주식회사 Z-Service와 기술제휴 스팀트랩의 새로운 역사 에코스티머

벤처기업 인증 제20130108537호

Eco - Steamer

스팀트랩 때문에 고생하셨죠?

스팀 먹는 하마인 종래의 스팀트랩이 귀사의 생산성 향상을 방해해도 우리는 몰랐습니다. 회사의 자금이 종래의 스팀트랩으로 줄줄 새고 있어도 우리는 몰랐습니다.

설령 알고 있다 해도 이렇다 할 대책이 없었습니다.

이제부터 Eco-Steamer가 그것을 해결합니다.

Eco-Steamer가 귀사의 경쟁력을 높여드립니다.

보수관리의 간소화, 열효율의 향상으로 생산성을 크게 높여드립니다.

누출되는 스팀을 차단해 주는 Eco-Steamer가 CO2 삭감까지 책임집니다.

▲ 스팀트랩의 역사를 바꾼 Eco-Steamer는 전혀 새로운 방식의 응축수 배출장치 입니다.

> ■ 에어(Air)에 의한 장애가 없어 배출이 신속함에 따라 Start(起動)가 빨라집니다.

종래의 스팀트랩

에코스티머 최적구경의 오리피스(에코스티머)의 경우

기존형 트랩과 누출비교

Eco-Steamer라?

■ 에코스티머는 오리피스의 성질을 이용한 스팀배관 내의 응축수를 연속 배출하는 장치입니다.

■ Eco-Steamer의 연속 배출 원리는?

■ 에코스티머는 개방된 원형의 오리피스로 증기(기체)와 응축수가 각각 개별적으로 100%흐를 경우 응축수에 비해 증기의 유량이 극단적으로 적은 사실에 착목을 하여 종래의 스팀 트랩에 내장되어 고장의 원인이기도 한 가동부분을 완전히 배제한 심플하고도 작은 특수구조의 독자 적으로 개발한 특허상품입니다.

■ Eco-Steamer 적정모델 선정 방법

■ 증기를 사용하는 설비와 배관에서 발생하는 최대 응축수량과 압력을 파악하여 에코스티 머 모델을 선정합니다. 설령 응축수량이 큰 폭의 변동이 있어도 종래의 스팀트랩 이상의 증기누출 없이 신속하게 연속 배출합니다.

Eco-steamer 설치전후의 실제 사례(안산) 국내 실적 확인서

설치 전

설치 후

확 인 서

수 신 자 : 오순웅(서울특별시 은평구 응암동 111-1번지 송원빌딩 804호) 주식회사 에이앤피 컨설턴트

제목 : 스팀트랩 교체에 따른 스팀사용량 변화 및 에너지 절감에 대한 회신

- 정치의 일부 부품이 마모된 기존 스템트랩을 당사의 스템트랩(메코스타 머)으로 5개를 각각 2011년 4월 30일(1기)과 7월 10일(4개)에 교체 하
- 3. 교체 이후 2개월간 경과를 살펴본 결과 아래와 같이 스팀 사용량 및 에
- 3. 교체 이후 2개교단 영화를 필최는 필화 어때가 붙어 보ి 사용용 및 에 너지 절감효과가 있으며, 4. 기계적인 마모가 없어 주기적인 교체가 불필요해 반영구적으로 사용이 가능한 것으로 판단되오니 업무에 참조하시기 바랍니다.

- OF 2H -

구 분	기존스팀트랩	에코스티머
스팀트랩 Type	볼 후르트	오리피스
설치대수	11대	5대/11대
사용기간		2011-8.1부터 1.5개월
스팀사용량	2,700kg/h	2,400kg/h
절감스팀량(비율)	-	300kg/h(12%)
스팀단가(원/ton)	38,500원/ton	38,500원/ton
절감효과 금액(원/월)	-	약 550만원/월 (24시간/일, 20일/월)
설치 전후의 사진		

2011년 9월 19일

■ Eco-Steamer 설치에 의한 단순구조, 공간 절약, 간편 시공

■ 설치공사 시 삼각대나 크레인이 필요가 없습니다. 기존의 트랩은 대용량의 경우 크기와 중량이 어마어마하여 삼각대, 크레인 등이 동원되었습니다. 이에 비해 Eco-Steamer는 기존 트랩에 비해 극단적으로 작아 1인 공사가 가능하며 설치 후 받쳐주 는 받침대 공사도 필요 없으며 점유 면적도 기존의 5분의 1이하로 깨끗한 현장을 확보해 드립니다.

에코스티머는 오리피스 단순구조
배관파이프의 小구경 시공으로 코스트삭감에 공헌합니다.

■ Eco-Steamer의 뛰어난 내구성

- 저압라인(1.0MPa 이하)에서 사용할 경우 에코스티머의 오리피스는 반영구적인 내구성(실적20년)을 가지고 있습니다.
- 기존의 스팀트랩의 대용량의 경우 6개월, 중소용량의 경우 3년~5년이면 교체해야 하는 것에 비해 Eco-Steamer를 채택하면 교체에 대한 부담에서 벗어 날 수 있습니다.

■ Eco-Steamer의 응축수 배출 원리 1

■ 물을 증기로 만들면 용적이 약 1,700배로 됩니다. 물이 1시간당 50Kg 통과할 수 있는 사이즈의 구멍에 증기를 통과시키면 약 1.85kg 밖에 통과할 수 없습니다.

[Table] Steam leak rate per condensate flow amount

MPa*G	%	MPa*G	%	
0.1	3.7	2.6	8.8	
0.2	3.9	2.7	8.9	
0.3	4.0	2.8	9.1	
0.4	4.1	2.9	9.3	
0.5	4.3	3.0	9.4	
0.6	4.5	3.1	9.6	
0.7	4.8	3.2	9.7	
0.8	5.2	3.3	9.8	
0.9	5.6	3.4	10.0	
1.0	6.0	3.5	10.1	
1.1	6.1	3.6	10.3	
1.2	6.3	3.7	10.4	
1.3	6.5	3.8	10.5	
1.4	6.7	3.9	10.7	
1.5	6.9	4.0	10.8	
1.6	7.1	4.1	11.0	
1.7	7.3	4.2	11.1	
1.8	7.4	4.3	11.2	
1.9	7.6	4.4	11.3	
2.0	7.8	4.5	11.4	
2.1	8.0	4.6	11.5	
2.2	8.1	4.7	11.6	
2.3	8.3	4.8	11.7	
2.4	8.5	4.9	11.8	
2.5	8.6	5.0	11.9	

물과 증기의 상관관계

Eco-Steamer의 응축수 배출 원리 2

■ 증기는 응축수보다도 통과속도가 빠름에도 불구하고 응축수에 방해를 받아 결과적으로 같은 체적분만 통과할 수 있습니다. 같은 체적에서 증기의 무게는 응축수에 비해 매우 작아 결과적으로 증기 리크량은 미량입니다.

응축수의 SEAL 효과

■ 응축수가 오리피스 터널구조 내부를 통과하고 있는 동안 증기는 통과할 수 없습니다. 응축수의 발생량이 오리피스의 배출능력 50%를 상회하고 있는 경우 오리피스는 언제나 Seal된 상태를 유지 합니다.

Eco-Steamer의 적정 모델의 선정

■ 에코스티머는 사용조건(발생응축수량·차압)에 대해 최적 사이즈의 오리피스를 선정할 필요가 있습니다.

통상 배관 내에는 증기와 응축수가 2중 혼합유체로 되어 흐르고 있는데 오리피스에 있어서는 응축수의 모세관현상에 의해 응축수량이 최대 배출능력 50%이상이 되면 증기는 통과할 수 없습니다. 오리피스는 이 성질을 이용하여 응축수 부하율 100%~50%가 되도록 선정합니다.

■ Eco-Steamer와 종래의 스팀트랩의 비교표

구분	항목	에코스티머	종래의 스팀트랩
1	동반증기	전혀 불필요(압력차만으로 배출)	필요(응축수 배출에 반드시 필요)
2	초기성능유지	15년 이상 초기성능 수평유지	2~3개월부터 노화 시작(증기누출시작)
3	내구성	20년 이상(반영구적)	3~5년
4	워터 햄머	해소	발생
5	열효율 향상	약 15%이상 향상	불기능
6	기종선정의 기준	압력치와 응축수량	배관의 사이즈
7	교체 유지관리	원칙적으로 불필요	정기적으로 교체
8	고장율 (고장종류)	연간 1%미만(막힘)	1%이상(마모, 막힘, 작 동불 량)
9	고장의 보수방법	막힘 청소만으로 성능 복구	교체
10	고장의 예방방법	연 1-2회 스트레이너 연결 볼밸브 개방으로 해결	없음
11	스팀 압력의 변화	압력변화가 없어 엄격한 온도관리	맥박처럼 압력변화 동반
12	설치 방향의 제약	없음	수평설치만 가능

■ Eco-Steamer 제품구성 (표준모델 34종)

A형 · B형 [1/2B]

가장 많이 사용되는 모델

A형(모델번호 A1~A5)

6단 오리피스로 막힘 방지 오리피스 구경 구조

B형(모델번호 B1~B10)

단일 구멍(孔) 막힘 방지 오리피스 구경 구조 정류판 삽입으로 응축수의 흐름을 분산시켜 유속에 의한 후단의 배관손상을 최소화

플랜지 조립 외관도

■ 최고 사용압력: 1.6MPa·G(220°C)

■ 본 체 재 질: SUS304

■ 내부 부속재질: SUS316

■ Y형 스트레이너: 내열온도 220°C

내압압력 1.6MPa·G

■ Ball 밸브: 내열온도 220°C

내압압력 1.0MPa·G

C형·D형 [3/4B]·[1B]

정류판 삽입으로 응축수의 흐름을 분산시켜 유속에 의한 후단의 배관손상을 최소화

C형(모델번호 C1~C10) 밸런스가 잡힌 배출 능력

D형(모델번호 D1~D9) 터널구조를 개조하여 대응능력 향상

플랜지 조립 외관도

■ 플랜지 면간 표준 간격

A형: 230mm B형: 230mm C형: 260mm D형: 280mm

고압 L형

고압용(2,0MPa·G이상)에서 사용하는 에코스티머입니다. 상류측에 LAP 플랜지에 접속하는 구조로 되어 있어 증기압력(△P)·발생 응축수량에 따라 내부의 오리피스 구경과 갯수를 조정하여 최적의 Model을 선정 제공합니다.

■ 접속 플랜지 : KS / ANSI / JIS
■ 본체 재질 : SUS 304
■ 최고사용압력: 20,0Mpa·G
■ 내부 부속재질: SUS 316

■ 최고사용온도 : 450 ℃

초대용량 응축수 배출 K형

사용증기압력(\triangle P) 과 응축수 발생량(Max) kg/h에 의해 설계·제작합니다. 기존의 스팀 트랩에 비해 매우 작고 경량·설치방향의 제약 없음.

히트 트레이서

플랜트 배관 내의 유체유지온도100℃미만의 동관 트레이스 전용품으로 개발, 고정 오리피스의 증기통과량은 사용압력과 오리피스 구경으로 결정되는 점을 이용하여 동관 내 증기 취출구 밸브에 설치하여 조정은 밸브로 실시, 기존 트랩은 제거(반영구 사용)

에코스티머 모델선정 Data sheet

[증기주관용]

				년	월	일
 사용장소		회사명				
16.6—		소 속				
		 담당자				
		 전 화				
1. 증기압력				MP	a · G	
2. 응축수회수유무	무	유	(배압	MPa	a · G)	
3. 증기주관호칭(구경호칭)		A(m)	B(incl	n)		
4. 트랩설치간격	약	m				
	나사	사이즈	А			
	플랜지	면간격	mm			
5. 트랩 접속부	플랜지 시	사이즈 (A(파운	·⊑))	
	플랜지 구	구격 (KS, JPI,	ANSI, JIS	()		
	플랜지 [변형상 (FF, RF <u>,</u>	RJ)			
6. Flow 개략도						

┣️ (주)에코스티머

에코스티머 모델선정 Data sheet

[열교환기용]

(氣·液)				년	월	일
사용장소		회사명	소	속		
		담당자	전	화		
1. 운전최대압력				MPa	a · G	
2. 응축수회수유무	무	유	(배압	MPa	a·G)	
3. 콘트롤밸브 유무	무	유	(ON/OFF4	나 비례제	어식)	
4. 운전최대증기유량			kg/h			
5. 비가열물질의 양			m³/h			
6. 초기온도와 최종온도	초기	°C	최종		$^{\circ}$	
7. 비가열 물질의 비중X비열			분			
8. 승온시간						
	나사	사이즈	Α			
	플랜지	면간격	mm			
9. 트랩 접속부	플랜지 사이) 즈 (A(파운드	=))		
	플랜지 규격 (KS, JPI, ANSI, JIS)					
	플랜지 면형					
치대 연교하느려	•		(kool/b . kw/b)			

최대 열교환능력 (kcal/h·kw/h) * 최대 열교환능력이 확인가능한 경우, 4~8은 기입하지 않으셔도 됩니다.

(프로세스)

1. 증기 유량제어의 유무 (CV제어)		무		유		
	MAX			k	g/시간	
2. 드레인량 (증기사용량)	NOR			k	g/시간	
	MIN			k	g/시간	
3. 사용 증기 압력						
4. 사용 증기 온도						
5. 트랩 입구의 압력						
6. 트랩 출구의 압력(배압)						
7. 기설트랩의 기종 및 면간거리(플랜지 면간의 거리)				r	nm	
		나사	사이즈	Α		
		플랜지	면간격	mm		
8. 트랩 접속부		플랜지 사이즈	≤ (A(파운드))	
		플랜지 규격	(KS, JPI,	ANSI, JI	S)	
		플랜지 면형성	f (FF, RF,	RJ)		
9. 장치 개략도						

